Linear Inviscid Damping for Couette Flow in Stratified Fluid
نویسندگان
چکیده
We study the inviscid damping of Couette flow with an exponentially stratified density. The optimal decay rates of the velocity field and the density are obtained for general perturbations with minimal regularity. For Boussinesq approximation model, the decay rates we get are consistent with the previous results in the literature. We also study the decay rates for the full Euler equations of stratified fluids, which were not studied before. For both models, the decay rates depend on the Richardson number in a very similar way. Besides, we also study the dispersive decay due to the exponential stratification when there is no shear.
منابع مشابه
Inviscid dynamical structures near Couette ow
Consider inviscid uids in a channel f 1 < y < 1g. For the Couette ow ~v0 = (y; 0), the vertical velocity of solutions to the linearized Euler equation at ~v0 decays in time. At the nonlinear level, such inviscid damping is widely open. First, we show that in any (vorticity) H s < 3 2 neighborhood of Couette ow, there exist non-parallel steady ows with arbitrary minimal horizontal period. Th...
متن کاملLinear stability of viscous supersonic plane Couette flow
The linear stability of viscous compressible plane Couette flow is not well understood even though the stability of incompressible Couette flow has been studied extensively and has been shown to be stable to linear disturbances. In this paper, the viscous linear stability of supersonic Couette flow for a perfect gas governed by Sutherland viscosity law was studied using two global methods to so...
متن کاملar X iv : 0 90 5 . 31 63 v 1 [ m at h . A P ] 1 9 M ay 2 00 9 Sommerfeld Paradox - A Novel Study
Sommerfeld paradox roughly says that mathematically Couette shear flow is linearly stable for all Reynolds number, but experimentally it is unstable to any size perturbation when the Reynolds number is large enough. Our study here focuses upon a sequence of 2D oscillatory shears which are the Couette linear shear plus small amplitude and high frequency sinusoidal shear perturbations. The sequen...
متن کاملThe Ritz-Galerkin method for MHD Couette flow of non-Newtonian fluid
In this paper, the Ritz-Galerkin method in Bernstein polynomial basis is applied for solving the nonlinear problem of the magnetohydrodynamic (MHD) flow of third grade fluid between the two plates. The properties of the Bernstein polynomials together with the Ritz-Galerkin method are used to reduce the solution of the MHD Couette flow of non-Newtonian fluid in a porous medium to the solution o...
متن کاملUnbalanced instabilities of rapidly rotating stratified shear flows
The linear stability of a rotating, stratified, inviscid horizontal plane Couette flow in a channel is studied in the limit of strong rotation and stratification. Two dimensionless parameters characterize the flow: the Rossby number ǫ, defined as the ratio of the shear to the Coriolis frequency and assumed small, and the ratio s of the Coriolis frequency to the buoyancy frequency, assumed to sa...
متن کامل